

BENTOLINER® GCL PRODUCTS

INSTALLATION QUALITY ASSURANCE MANUAL

TABLE OF CONTENTS

INTRODUCTION.	5
UNLOADING PROCEDURES	5
STORAGE	5
SUBGRADE PREPARATION	ł
DEPLOYMENT	ł
OVERLAPS & SEAMS	;
ATTACHMENT DETAILS	5
ANCHORING	;
REPAIRS	;
INSPECTION	;
COVER MATERIAL	;
HYDRATION & ACTIVATION	7
	INTRODUCTION

This information is provided for reference purposes only and is not intended as a warranty or guarantee. SOLMAX assumes no liability in connection with the use of this information. Please check the revision date and refer to our website for the latest updates.

1.0 INTRODUCTION

This manual provides an overview of the Solmax Installation Quality Assurance procedures consistent with industry accepted practices to ensure that the BentoLiner[®] GCL products installed will best perform for its intended purpose. In addition, all installation work will be performed in strict accordance per the customer's specifications. Please read the procedures below completely before you begin. If you need further clarification, contact your Solmax representative for assistance, or please refer to ASTM D 6102, Standard Guide for Installation of Geosynthetic Clay Liners and ASTM D 5888, Standard Guide for Storage and Handling of Geosynthetic Clay Liners. Remember safety first and use safe practices always on every project.

2.0 UNLOADING PROCEDURES

As with all lifting or unloading operations, appropriate equipment and experienced personnel should be employed along with proper safe handling methods. The party responsible for unloading the BentoLiner[®] should contact Solmax prior to shipment to determine the correct unloading methods and equipment if different from the pre-approved and specified methods as described below.

Lifting GCL rolls can typically be accomplished by using a 2.5 in - 3.0 in (63 mm - 75 mm) outside diameter (O.D.) steel pipe (preferably solid), with a wall thickness capable of providing sufficient beam strength to support the weight of the roll, which average less than 3,000 lb (1,364 kg) and the length is approximately 18 ft (5.5 m). This core pipe is inserted through the hollow center of the GCL cardboard core. Heavy-duty slings or chains, which are approximately 10 ft (3.1 m) long each, are attached to each end of the pipe, which are then fastened to a I-beam spreader bar or a Solmax approved alternative. Care should be taken to ensure that lifting chains or straps do not rub, chafe, or otherwise damage the GCL. A crane, backhoe, front-end loader or another suitable piece of construction equipment can then lift the entire assembly.

An all-terrain, extendable boom forklift, such as a Lull or Caterpillar Telehandler, can be fitted with a special, solid steel "carpet pole" or stinger, typically 14.0 ft (4.3 m) in length having an outside diameter of no more then 3.38 in (8.6 mm). The carpet pole can be inserted into the hollow cardboard core of the GCL roll.

The roll should not be fully suspended until the pole extends through the entire length of the core tube or you run the risk that the core may break creating additional handling and unloading difficulties.

A properly structured and supported pole can be used to unload GCL rolls onsite. As an alternative, straps that are appropriately rated can be used as a Solmax approved lifting method to unload GCL rolls. Lifting straps are supplied on every roll. Each GCL roll label contains roll weight information that should be consulted in determining appropriate lifting equipment and factors of safety. The CQA inspector or owner's representative should verify that only appropriate handling equipment is utilized, i.e. equipment that does not pose any danger to personnel or undue risk of damage or deformation to the liner material.

3.0 STORAGE

While stored GCL needs to be kept dry and away from potential flooding or high storm runoff. On the job site storage methods include; storing the rolls tarped on pallets; storing the rolls under roof in a clean, dry protected area; and storing the rolls on a flat, dry, stable surface suitably covered with protective waterproof tarps. Rolls can be stacked as long as it is done in a manner that prevents them from rolling, shifting, or spontaneously moving. Maximum roll height should be determined by CQA personnel, but never more than can be safely managed considering site conditions, equipment and personnel.

Stored rolls should be tarped and remain in their original, unopened plastic shipping sleeves to prevent damage and undue prehydration prior to installation. Any rolls that come in contact with water should be examined by CQA or an owner's representative prior to installation. Prehydrated or physically damaged rolls should be set aside for further examination to determine the plausibility of repair or need to replace.

4.0 SUBGRADE PREPARATION

The surface upon which the BentoLiner[®] is installed should be smooth and free of wheel ruts, debris, roots, sticks, and rocks larger than 1.0 in (25 mm). Site specific compaction requirements should be followed in accordance with the project plans and specifications. At a minimum, the site should be smooth-rolled the level of compaction such that installation equipment and other construction vehicles traffic does not cause rutting greater than 1.0 in (25 mm) deep. Furthermore, all protrusions extending more than 0.5 in (12 mm) from the subgrade shall be removed, crushed, or pushed into the subgrade.

In applications where the product is the sole barrier, subgrade surfaces consisting of gravel or granular soils may not be acceptable due to their large void content. For these applications, the subgrade shall be greater than 80% fines and contain no particles larger than 1 in (25 mm). In all high head, water containment applications, i.e. maximum water depth greater than 1 ft (30.5 cm), Solmax recommends the use of a coated or laminated GCL.

Immediately prior to deployment of the GCL, the subgrade shall be final compacted to fill in any remaining voids or desiccation cracks and to ensure that no sharp irregularities or abrupt elevation changes exist greater than 1.0 in (25 mm). The surfaces to be lined shall be maintained in this condition and free of standing water. GCL can be deployed on a frozen subgrade, if the subgrade would meet all the conditions as previously outlined if unfrozen.

The subgrade surface and preparation should be inspected and certified by the CQA inspector prior to BentoLiner[®] placement. Upon approval by the CQA inspector, it is the geosynthetic installer's responsibility to communicate to the engineer of any changes in the condition of the subgrade that might render it out of compliance, with any of the requirements of the project specification or ASTM Standard D 6102.

5.0 DEPLOYMENT

As rolls are selected for deployment, the labels should be removed and recorded by the installer, along with any other pertinent information. The rolls should only be transported from the storage area using approved lifting equipment as described in section 2.0. The roll is supported during deployment, so that the fabric designated as the upper surface faces out, away from the installation vehicle. The free-end of the roll can then be secured, while the vehicle supporting the roll slowly backs away, deploying the GCL as it moves. Alternatively, the free-end can be manually pulled across an area to be lined by the installation crew while the equipment simply suspends the roll. Equipment traveling directly on GCL for deployment of overlying geosynthetics should be limited to lightweight ATVs maximum bearing capacity of 8.0 psi (34.5 kPa) or equivalent.

Successive panels are overlapped according to project specifications and/or within the overlap lines stenciled on the upper surface of each panel. Wherever possible, installation of BentoLiner[®] should begin at high elevation and proceed to low elevation. This allows any precipitation to accumulate and drain quickly without adversely affecting the GCL. The edges of exposed GCL should be weighted down with sandbags or equivalent ballast to prevent uplift in the event of substantially strong winds.

Only as much BentoLiner[®] as can be fully covered by the end of the day should be deployed or such amount that can be covered in a reasonably short time in the event of heavy precipitation. When GCL is being installed under a geomembrane, the leading edge should be folded back under the membrane at the end of the construction day. Temporary ballasting, such as sandbags, to prevent uplift and the infiltration of runoff water should secure the leading edge of the membrane.

BentoLiner[®] panels should be installed in a relaxed condition, free of wrinkles and folds. When fitting the product into small areas or around construction details, use a sharp utility or hook blade knife to cut the liner to the appropriate dimensions. Adjacent panels should overlap at the edges as described in section 6.0 below.

6.0 OVERLAPS & SEAMS

Unless specified differently adjacent lengthwise (longitudinal) seams should be overlapped a minimum of 6.0 in (150 mm). Granular bentonite should be used to augment all overlapped seams. Loose granular bentonite is placed between ajoining panels into the overlap area at a rate of 0.25 lb per linear foot (350 g per linear meter) of seam. Widthwise overlaps at the butt ends of rolls should be a minimum 12.0 in (300 mm). Seams should be shingled in a down slope direction, so that water flows across the seam from upslope sheet to the down slope sheet.

When the liner is cut to fit in small areas, i.e. into corners or around structures, adjacent panels should overlap a minimum of 1.0 ft (300 mm), adding abundant loose granular bentonite into the overlapped areas.

7.0 ATTACHMENT DETAILS

The product should be installed around penetrations, structures, pipes, structures and other appurtenances according to the contract drawings. BentoLiner[®] may be secured to appurtenances by use of a stainless steel batten or clamps, mechanical fasteners, or other appropriate device if necessary to minimizing movement. The use of additional granular bentonite or bentonite paste is recommended to maximize the seal around structures or protuberances.

8.0 ANCHORING

BentoLiner[®] is typically anchored in a trench around the perimeter of the lined area, which provides the required pullout resistance. In most cases, GCL can be anchored in the same trench as any adjacent geosynthetic liner components (if used). Dimensions and locations of the trench should be provided in the project drawings. Alternately, the material may be anchored by deploying additional run out of material, a minimum of 3.0 ft (1.0 m), past the slope crest and toe. Typically GCL should not be deployed in tension. The force holding the GCL in place should be provided by friction between the GCL and adjacent materials

Steps should be taken to ensure that precipitation does not accumulate in the trench prior to backfilling. The GCL should only cover the front face and bottom of the anchor trench. The trench should be backfilled and properly compacted prior to placing cover soil on the slopes.

9.0 REPAIRS

In the event an area of BentoLiner[®] becomes damaged, torn, or punctured during installation, the affected area should be repaired. On relatively level surfaces, the damaged area should be covered with a separate piece of BentoLiner[®] extending at least 12.0 in (300 mm) beyond the damaged area in every direction. Granular bentonite should be used to augment the patch overlays as is required for all other seams. Patches on side slopes can be temporarily secured with construction adhesive such as Liquid Nails or tape.

Areas that are exposed to standing water or excess precipitation with resulting bentonite hydration, typically defined as greater than 30% moisture, prior to soil covering, should be examined for bentonite displacement and damage by subsequent activities. If it is determined that the GCL has been hydrated and damaged, the GCL should be covered with new material over the affected area or removed and replaced. All BentoLiner[®] material exposed to hydrocarbon fuels, chemicals, pesticides, non-compatible leachates, or other harmful liquids during the installation should be removed and replaced with non-affected material.

10.0 INSPECTION

Prior to soil covering the panels, penetrations and any other details should be visually inspected to ensure full coverage and proper orientation. Once the installed BentoLiner[®] material has been approved the next layer of geosynthetics or soil covering may be applied.

11.0 COVER MATERIAL

Only the amount of BentoLiner[®] GCL that can be anchored, inspected, and covered the same day should be installed. In cases where the BentoLiner[®] GCL is the sole hydraulic barrier, the GCL should be covered with the specified thickness of cover soil (a minimum 1.0 ft (300 mm)) immediately following deployment. Where BentoLiner[®] GCL is used in conjunction with other membrane components, it should be covered with the geomembrane after placement, as soon as possible to protect it from the climatic elements.

When a geomembrane is being installed over the GCL, the leading edge of the BentoLiner[®] should be folded back under the geomembrane so that the geomembrane extends beyond the GCL a minimum of 2.0 ft (600 mm). The leading edge of the membrane should subsequently be weighted with sand bags or suitable ballast to safeguard against wind uplift and to prevent runoff water from undermining the liner.

When BentoLiner[®] is used with no overlying geomembrane, the soil cover should be placed within 2.5 ft (800 mm) of the leading edge of the GCL. The leading edge can then be covered with plastic sheeting that is folded under the exposed edge approximately 12.0 in (300 mm). Sand bags or suitable ballast should be placed on the liner to hold the plastic in place and to partially confi ne the GCL. The next morning the ballasts and the plastic can be removed and subsequent rolls of GCL placed as described in section 5.0.

Cover soil placed directly on GCL should have a gradation to not damage or puncture the GCL. Cover soil should be free of all rocks greater than 0.75 in (18 mm) diameter, sharp or angular objects, sticks, roots or debris. Appropriate placement methods should be used at all times to protect the GCL. Compatibility of BentoLiner® GCL with the soil should be verified. Cover material should be pushed across the seams from top to bottom to prevent the cover material from lodging between the overlapped panel seams.

12.0 HYDRATION & ACTIVATION

In applications where the product is used as the sole hydraulic barrier, such as secondary containment, the GCL must first be hydrated with fresh water. Non-aqueous chemicals will not activate the bentonite. Therefore, bentonite hydration via rainwater or sprinkler and irrigation is necessary. When hydrated, the BentoLiner® is an excellent barrier to hydrocarbon fuels, fertilizers, and other such chemicals.

Only after the cover material has been placed should the BentoLiner[®] be allowed to hydrate. Once hydration has occurred no vehicles should be allowed to traffic the area directly above the GCL, unless minimum 1.0 ft (300 mm) separation exists between the GCL and the vehicle to adequately distribute the vehicle load. This should be increased to a minimum of 2.0 ft (600 mm) in high traffic areas such as roadways.

Periodic inspection of the liner to ensure proper coverage and adequate moisture content is recommended when BentoLiner[®] is used alone under a minimum 1.0 ft (300 mm) depth of cover soil. In arid regions, it may be necessary to irrigate the containment area, at a predetermined interval and/or a laminated or coated GCL used and deployed with the plastic component up in order to minimize dessication and wet – dry cycling.

OUR LOCATIONS

SOLMAX.COM

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.