

# Material Specifications

### WinterStraw™ HV

HVG - Double Net -Green HVW - Double Net -White HV Bio - Double Net - Jute



**WinterStraw™ HV** (High Velocity) Double Net Products are short term, single top & single bottom net erosion control blankets that are machine-assembled using 100% agricultural straw fibers. The straw fibers are evenly distributed across the entire area of the blanket to a rough thickness of 3/8″ and stitched between your choice of netting using high strength degradable thread. Biodegradable thread is used on our Bio (Jute) Products

Each blanket is covered on the top and bottom with a photodegradable polypropylene or jute net. Net openings are approximately  $\frac{1}{2}$ " wide x  $\frac{1}{2}$ " long and are stitched on 1  $\frac{1}{2}$ " centers for increased performance capabilities.

#### **Netting options:**

Green Net - Standard photodegradable polypropylene netting.

White Net - Rapidly degrading, polypropylene netting with a UV degrader additive.

Jute Net - Biodegradable fiber netting

All WinterStraw™ blankets are individually labeled and shrink-wrapped to protect against the weather and damage.

#### **Materials:**

100% Certified Weed Free Straw

Photodegradable polypropylene Netting or Jute Netting

Degradable polypropylene Thread or Biodegradable Thread

#### **Roll Sizes:**

| Area:   | 100 yd <sup>2</sup> | 200 yd <sup>2</sup> | 500 yd <sup>2</sup> |
|---------|---------------------|---------------------|---------------------|
| Width:  | 8 feet              | 16 feet             | 8 feet              |
| Length: | 112.5 feet          | 112.5 feet          | 562.5 feet          |
| Weight: | 50 lbs              | 100 lbs             | 250 lbs             |

#### **Physical Characteristics:**

Fiber: 100% Certified Weed Free Agricultural Straw

Unit Weight:  $0.50 \text{ lb/yd}^2 \pm 10\%$ 

Thread Material: High Tensile Polypropylene or High Tensile Biodegradable Thread

Thread Pattern: 1.5" wide x 4" long

Netting: Polypropylene (green or white) or Jute Netting

Net Openings: ½" wide x ½" long Net Configuration: 1- Top & 1- Bottom

#### **Performance Characteristics:**

Winterstraw™ blankets are designed to provide temporary ground cover to reduce erosion, protect seeding, enhance germination, and speed re-vegetation. Functional longevity is between 3 and 12 months depending on soil conditions, climate, geography, and choice of netting. Testing shows HVG, HVW, and HV Bio blankets are suitable for the following applications:

**Slopes:** up to 2:1 **Channel flows:** up to 4.5 ft per second **Shear Stress:** up to 1.63 lbs/ft².

All figures are based on product at the time it is manufactured.

## WinterStraw<sup>TM</sup> ~ Double Net Performance Data Sheet

WinterStraw™ blankets are constructed of 100% Natural Straw fibers stitched between two photodegradable polypropylene nets using degradable thread. WinterStraw™ HVBio blankets offer biodegradable Jute netting and high tensile biodegradable thread. Our blankets are designed to protect against erosion by providing temporary ground cover while enhancing seed germination and assisting with vegetation establishment. Functional longevity is as short as 45 days and up to 12 months depending on product used and site conditions. Soil erosion is controlled by the root system, stem and leaf structure of the mature vegetation after the blankets degrade.

WinterStraw Double Net blankets are rated for channel flows up to 4.5 feet per second and 1.63-lbs/ft² shear stress. Additionally, our blankets have a design C-Factor of .042 and are typically appropriate for up to 2:1 slopes.

### Additional Physical Properties as tested and observed:

| <b>Property</b>     | Test Method                 | Typical Values* |
|---------------------|-----------------------------|-----------------|
| Mass per Unit Area  | ASTM D 6475                 | 8 oz/yd²        |
| Thickness           | ASTM D 6525                 | 0.366 inches    |
| Light Penetration   | ASTM D 6567                 | 11%             |
| Water Absorption    | ASTM D 1117/ECTC-TASC 00197 | 403%            |
| Swell               | ECTC Guidelines             | 22%             |
| Resiliency          | ASTM D 6524                 | 61%             |
| MD Tensile Strength | ASTM D 4595                 | 132 lb/ft       |
| MD Elongation       | ASTM D 4595                 | 16%             |
| TD Tensile Strength | ASTM D 4595                 | 144 lb/ft       |
| TD Elongation       | ASTM D 4595                 | 24%             |

#### **ECTC Bench Scale Testing \*\***

| Description of Test Method                                                                                               | Test Method                     | Results                |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|
| ECTC Method 2 -Determination of un-                                                                                      | 2 in. (50mm)/hr for 30 minutes  | Soil Loss Ratio = 4.60 |
| vegetated RECP ability to protect soil from                                                                              | 4 in. (100mm)/hr for 30 minutes | Soil Loss Ratio = 6.10 |
| Rain Splash and associated runoff.                                                                                       | 6 in. (150mm)/hr for 30 minutes | Soil Loss Ratio = 8.00 |
| ECTC Method 3 – Determination of unvegetated RECP ability to protect soil from Hydraulically Induced Shear stress.       | Shear Loss Curve Intercept      | 1.63 psf@ ½" soil loss |
| ECTC Method 4 – Determination of Temporary Degradable RECP performance in encouraging seed germination and plant growth. | % Improvement/Increased Biomass | 443%                   |

<sup>\*</sup> Index values may vary from measurements taken at the time of manufacturing due to environmental conditions affecting gains or losses in moisture.

<sup>\*\*</sup> Soil Loss Ratios, as reported by NTPEP = Soil Loss Bare Soil/Soil Loss with RECP (Note: soil loss is based on regression analysis)











